Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Microbiol ; 206(5): 236, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676717

RESUMEN

Lignocellulolytic enzymes from a novel Myceliophthora verrucosa (5DR) strain was found to potentiate the efficacy of benchmark cellulase during saccharification of acid/alkali treated bagasse by ~ 2.24 fold, indicating it to be an important source of auxiliary enzymes. The De-novo sequencing and analysis of M. verrucosa genome (31.7 Mb) revealed to encode for 7989 putative genes, representing a wide array of CAZymes (366) with a high proportions of auxiliary activity (AA) genes (76). The LC/MS QTOF based secretome analysis of M. verrucosa showed high abundance of glycosyl hydrolases and AA proteins with cellobiose dehydrogenase (CDH) (AA8), being the most prominent auxiliary protein. A gene coding for lytic polysaccharide monooxygenase (LPMO) was expressed in Pichia pastoris and CDH produced by M. verrucosa culture on rice straw based solidified medium were purified and characterized. The mass spectrometry of LPMO catalyzed hydrolytic products of avicel showed the release of both C1/C4 oxidized products, indicating it to be type-3. The lignocellulolytic cocktail comprising of in-house cellulase produced by Aspergillus allahabadii strain spiked with LPMO & CDH exhibited enhanced and better hydrolysis of mild alkali deacetylated (MAD) and unwashed acid pretreated rice straw slurry (UWAP), when compared to Cellic CTec3 at high substrate loading rate.


Asunto(s)
Biomasa , Proteínas Fúngicas , Genoma Fúngico , Lignina , Saccharomycetales , Sordariales , Lignina/metabolismo , Sordariales/genética , Sordariales/enzimología , Sordariales/metabolismo , Hidrólisis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deshidrogenasas de Carbohidratos/metabolismo , Deshidrogenasas de Carbohidratos/genética , Celulosa/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Celulasa/metabolismo , Celulasa/genética
2.
Bioprocess Biosyst Eng ; 47(4): 567-582, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38470501

RESUMEN

The present study reports a highly thermostable ß-glucosidase (GH3) from Rasamsonia emersonii that was heterologously expressed in Pichia pastoris. Extracellular ß-glucosidase was purified to homogeneity using single step affinity chromatography with molecular weight of ~ 110 kDa. Intriguingly, the purified enzyme displayed high tolerance to inhibitors mainly acetic acid, formic acid, ferulic acid, vanillin and 5-hydroxymethyl furfural at concentrations exceeding those present in acid steam pretreated rice straw slurry used for hydrolysis and subsequent fermentation in 2G ethanol plants. Characteristics of purified ß-glucosidase revealed the optimal activity at 80 °C, pH 5.0 and displayed high thermostability over broad range of temperature 50-70 °C with maximum half-life of ~ 60 h at 50 °C, pH 5.0. The putative transglycosylation activity of ß-glucosidase was appreciably enhanced in the presence of methanol as an acceptor. Using the transglycosylation ability of ß-glucosidase, the generated low cost mixed glucose disaccharides resulted in the increased induction of R. emersonii cellulase under submerged fermentation. Scaling up the recombinant protein production at fermenter level using temporal feeding approach resulted in maximal ß-glucosidase titres of 134,660 units/L. Furthermore, a developed custom made enzyme cocktail consisting of cellulase from R. emersonii mutant M36 supplemented with recombinant ß-glucosidase resulted in significantly enhanced hydrolysis of pretreated rice straw slurry from IOCL industries (India). Our results suggest multi-faceted ß-glucosidase from R. emersonii can overcome obstacles mainly high cost associated enzyme production, inhibitors that impair the sugar yields and thermal inactivation of enzyme.


Asunto(s)
Eurotiales , beta-Glucosidasa , Hidrólisis , beta-Glucosidasa/química , Biomasa
3.
Fungal Biol Biotechnol ; 10(1): 18, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658430

RESUMEN

BACKGROUND: The filamentous fungus Rasamsonia emersonii has immense potential to produce biorefinery relevant thermostable cellulase and hemicellulase enzymes using lignocellulosic biomass. Previously in our lab, a hyper-cellulase producing strain of R. emersonii was developed through classical breeding and system biology approaches. ACE1, a pivotal transcription factor in fungi, plays a crucial role in negatively regulating the expression of cellulase genes. In order to identify the role of ACE1 in cellulase production and to further improve the lignocellulolytic enzyme production in R. emersonii, CRISPR/Cas9 mediated disruption of ACE1 gene was employed. RESULTS: A gene-edited ∆ACE1 strain (GN11) was created, that showed 21.97, 20.70 and 24.63, 9.42, 18.12%, improved endoglucanase, cellobiohydrolase (CBHI), ß-glucosidase, FPase, and xylanase, activities, respectively, as compared to parental strain M36. The transcriptional profiling showed that the expression of global regulator (XlnR) and different CAZymes genes including endoglucanases, cellobiohydrolase, ß-xylosidase, xylanase, ß-glucosidase and lytic polysaccharide mono-oxygenases (LPMOs) were significantly enhanced, suggesting critical roles of ACE1 in negatively regulating the expression of various key genes associated with cellulase production in R. emersonii. Whereas, the disruption of ACE1 significantly down-regulated the expression of CreA repressor gene as also evidenced by 2-deoxyglucose (2-DG) resistance phenotype exhibited by edited strain GN11 as well as appreciably higher constitutive production of cellulases in the presence of glucose and mixture of glucose and disaccharide (MGDs) both in batch and flask fed batch mode of culturing. Furthermore, ∆ACE1 strains were evaluated for the hydrolysis of biorefinery relevant steam/acid pretreated unwashed rice straw slurry (Praj Industries Ltd; 15% substrate loading rate) and were found to be significantly superior when compared to the benchmark enzymes produced by parent strain M36 and Cellic Ctec3. CONCLUSIONS: Current work uncovers the crucial role of ACE1 in regulating the expression of the various cellulase genes and carbon catabolite repression mechanism in R. emersonii. This study represents the first successful report of utilizing CRISPR/Cas9 genome editing technology to disrupt the ACE1 gene in the thermophlic fungus R. emersonii. The improved methodologies presented in this work might be applied to other commercially important fungal strains for which genetic manipulation tools are limited.

4.
Bioresour Technol ; 360: 127507, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35753566

RESUMEN

The study was aimed at developing lignocellulolytic strain capable of efficient hydrolysis of mild alkali deacetylated (MAD) rice straw. The valorisation of lignin rich black liquor obtained during pre-treatment of rice straw into biogas was also evaluated. Study reports highly proficient cellulolytic Aspergillus allahabadii strain harbouring a spectrum of CAZymes based on comparative genome wide analysis that was subjected to strain breeding for developing a hyper producing strain. The secretome analysis showed up-modulation and several folds increase in the CAZyme activities in the culture extracts of the developed strain MAN 40 when compared to parent. The cellulolytic cocktail of the developed strain showed 1.52 folds higher saccharification of MAD rice straw when compared to Cellic CTec 3. Moreover, in-situ addition of cellulases derived from developed strains resulted in ∼3.7 folds higher methane production during anaerobic digestion of mixture of lignin rich black liquor and differently treated rice straw.


Asunto(s)
Biocombustibles , Oryza , Álcalis , Aspergillus , Biocombustibles/análisis , Humanos , Hidrólisis , Lignina , Azúcares
5.
Biomass Convers Biorefin ; : 1-22, 2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35342682

RESUMEN

The global cannabis (Cannabis sativa) market was 17.7 billion in 2019 and is expected to reach up to 40.6 billion by 2024. Canada is the 2nd nation to legalize cannabis with a massive sale of $246.9 million in the year 2021. Waste cannabis biomass is managed using disposal strategies (i.e., incineration, aerobic/anaerobic digestion, composting, and shredding) that are not good enough for long-term environmental sustainability. On the other hand, greenhouse gas emissions and the rising demand for petroleum-based fuels pose a severe threat to the environment and the circular economy. Cannabis biomass can be used as a feedstock to produce various biofuels and biochemicals. Various research groups have reported production of ethanol 9.2-20.2 g/L, hydrogen 13.5 mmol/L, lipids 53.3%, biogas 12%, and biochar 34.6% from cannabis biomass. This review summarizes its legal and market status (production and consumption), the recent advancements in the lignocellulosic biomass (LCB) pre-treatment (deep eutectic solvents (DES), and ionic liquids (ILs) known as "green solvents") followed by enzymatic hydrolysis using glycosyl hydrolases (GHs) for the efficient conversion efficiency of pre-treated biomass. Recent advances in the bioconversion of hemp into oleochemicals, their challenges, and future perspectives are outlined. A comprehensive insight is provided on the trends and developments of metabolic engineering strategies to improve product yield. The thermochemical processing of disposed-off hemp lignin into bio-oil, bio-char, synthesis gas, and phenol is also discussed. Despite some progress, barricades still need to be met to commercialize advanced biofuels and compete with traditional fuels.

6.
Bioresour Technol ; 351: 127039, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35318142

RESUMEN

The objective of this study was to develop thermophilic fungus Rasamsonia emersonii using integrated system biology tools (genomics, proteomics and transcriptional analysis) in combination with classical strain breeding approaches. Developed hyper cellulolytic mutant strain M36 showed endoglucanase (476.35 U/ml), ß-glucosidase (70.54 U/ml), cellobiohydrolase (15.17 U/ml), FPase (4.89 U/ml) and xylanase (485.21 U/ml) on cellulose/gram flour based production medium. Comparison of the expression profile at proteome and transcriptional level of the developed strain and wild type parent gave detailed insight into the up-regulation of different CAZymes including glycosyl hydrolases (GH5, GH6, GH7, GH3, GH10) and auxiliary enzymes (lytic polysaccharide monooxygenase, swollenin) at system level. Furthermore, the potential of lignocellulolytic enzyme produced by the developed strain and custom designed cocktail spiked with heterologously expressed lytic polysaccharide monooxygenase from Mycothermus thermophiloides were analyzed for the hydrolysis of biorefinery relevant unwashed pretreated rice straw slurry (PRAJ and IOCL) @17% substrate loading rate.


Asunto(s)
Eurotiales , Biología , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...